High glucose enhances LPS-stimulated human PMVEC hyperpermeability via the NO pathway
نویسندگان
چکیده
Chronic hyperglycemia is an established risk factor for endothelial damage. It remains unclear, however, whether brief hyperglycemic exposure exacerbates the damage to vascular endothelial cells induced by endotoxin. We hypothesize that brief hyperglycemic exposure enhances the permeability of the endothelium following stimulation with lipopolysaccharide (LPS). Correlations between modulation of nitric oxide synthase (NOS) pathways and altered endothelial homeostasis have been studied and demonstrated in various pathophysiological conditions. NOS activities are regulated by endogenous inhibitors, including asymmetric dimethylarginine (ADMA), which is metabolized by dimethylarginine dimethylaminohydrolase (DDAH). Since previous data demonstrated that endothelial dysfunction may be related to reduced expression and/or activity of DDAH, in this study, we aimed to determine the effect of increased glucose levels on pulmonary microvascular endothelial cell (PMVEC) permeability, including effects on the NOS pathways. Human PMVECs were incubated with normal (5.5 mM) and high (33 mM) concentrations of D-glucose for 5 days to create a monolayer of cells prior to LPS stimulation (10 μg/ml) for 12 h. When stimulated with LPS, cells incubated with a high glucose (HG) concentration had significant microfilament rearrangement compared with cells incubated with a normal glucose concentration, as determined by immunofluorescence. Scanning electron microscopy revealed a larger average diameter and increased number of fenestrae on the hyperglycemic PMVECs when stimulated with LPS, compared with PMVECs cultured with a normal glucose concentration. The results demonstrated that a high concentration of glucose increases the LPS-stimulated horseradish peroxidase (HRP) permeability compared with a normal concentration of glucose. Furthermore, a HG concentration upregulated LPS-stimulated inducible NOS (iNOS) production and down-regulated endothelial NOS (eNOS) and DDAH-2 expression. Hyperglycemia significantly increased LPS-stimulated nitrite/nitrate production (stable NO end-products). Our results, thus, demonstrate that in vitro HG concentrations exacerbate LPS-stimulated cytoskeletal rearrangement and hyperpermeability of an endothelial monolayer, and cause further imbalance of the NO pathway. These results suggest that it is important to manage even short-term increases in blood glucose, particularly following acute infection.
منابع مشابه
Resveratrol Ameliorates High Glucose and High-Fat/Sucrose Diet-Induced Vascular Hyperpermeability Involving Cav-1/eNOS Regulation
Vascular endothelial hyperpermeability is one of the manifestations of endothelial dysfunction. Resveratrol (Res) is considered to be beneficial in protecting endothelial function. However, currently, the exact protective effect and involved mechanisms of Res on endothelial dysfunction-hyperpermeability have not been completely clarified. The aim of present study is to investigate the effects o...
متن کاملp38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM.
Severe influenza infections are featured by acute lung injury, a syndrome of pulmonary microvascular leak. A growing number of evidences have shown that the pulmonary microvascular endothelial cells (PMVEC) are critical target of influenza virus, promoting microvascular leak. It is reported that there are multiple mechanisms by which influenza virus could elicit increased pulmonary endothelial ...
متن کاملHuman Alveolar Epithelial Cells Attenuate Pulmonary Microvascular Endothelial Cell Permeability under Septic Conditions
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are characterised by high-protein pulmonary edema and severe hypoxaemic respiratory failure due to increased permeability of pulmonary microvascular endothelial cells (PMVEC). Alveolar epithelial cells (AEC) contribute importantly to normal alveolar function, and AEC dysfunction in ALI/ARDS is associat...
متن کاملP-54: The Effect of Luteal Phase Support onPregnancy Rate of Stimulated IUI Cycles in UnexplaiendInfertility
Background: Progesterone (P) that is produced by the corpus luteum in response to stimulation by luteinizing hormone (LH) and human Chrionic Gondotropin (hCG) in luteal phase is essential for secretory transformation of endometrium that permits implantation .P not only supports endometrial development but also potentially sustains the survival of the embryo . Luteal phase dysfunction (LPD) is a...
متن کاملEnhancement of LPS-induced microglial inflammation response via TLR4 under high glucose conditions.
BACKGROUND Microglia activation mediated by toll-like receptor 4 (TLR4) plays an important role in neuroinflammation and postoperative cognitive dysfunction (POCD). Diabetes mellitus (DM) has been recently suggested as an independent risk factor for POCD. In this study, we investigate the potential exacerbation of the inflammatory response in primary microglia due to high glucose conditions. ...
متن کامل